

光纤型少模掺铒光纤放大器的差模增益可调性 研究

江歆睿,武保剑,许焰,文峰,邱昆

电子科技大学光纤传感与通信教育部重点实验室,四川成都 611731

摘要 利用少模掺铒光纤放大器(FM-EDFA)的差模增益可调性,可实现模式增益均衡、补偿链路模式相关损耗,能够大 大提高模分复用系统的组网灵活性。制作少模隔离器和波分复用器一体化光纤器件(FM-IWDM),并将其用于构建全光 纤型FM-EDFA。采用中心波长为1480 nm的泵浦光源开展同向和双向泵浦光放大实验,保持泵浦总功率为200 mW,通 过调节泵浦功率比例,分别获得2.6 dB和4.8 dB的最大可调差模增益。

关键词 光通信;模分复用;掺铒光纤放大器;差模增益 中图分类号 O436 文献标志码 A

DOI: 10.3788/AOS202242.1506004

Adjustability of Differential Mode Gain for All-Fiber Few-Mode Erbium-Doped Fiber Amplifiers

Jiang Xinrui, Wu Baojian^{*}, Xu Yan, Wen Feng, Qiu Kun

Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China

Abstract The adjustability of differential mode gain for few-mode erbium-doped fiber amplifiers (FM-EDFAs) can be used for mode gain equalization and compensation for link mode-dependent loss, which can significantly improve the networking flexibility of mode division multiplexing systems. A few-mode optical fiber device integrating the isolator and the wavelength division multiplexer (FM-IWDM) is produced to build all-fiber FM-EDFAs. Two optical amplifying experiments using the codirectional and bidirectional pumps with a center wavelength of 1480 nm are carried out, and the maximum adjustable differential mode gain of 2. 6 dB and 4. 8 dB can be achieved by adjusting the pump power ratio under the pump total power of 200 mW.

Key words optical communications; mode division multiplexing; erbium-doped fiber amplifiers; differential mode gain

1引言

单模光纤通信系统传输容量已接近非线性香农极限,空分复用(SDM)技术成为进一步扩容的有效手段,越来越受到人们的关注^[1-2]。与单模通信系统一样,空分复用系统也依赖于相应的掺铒光纤放大器来补偿传输损耗^[34]。不同模式间的增益差简称差模增益(DMG),是评价少模光放大性能的特有参数。在少模光纤通信系统中,DMG或模式相关损耗(MDL)需要控制在一定范围内,过大的DMG会导致系统中断^[5]。因此,要求少模掺铒放大器具有尽可能低的DMG,通常小于2dB^[6]。然而,就整个模分复用

(MDM)传输系统而言,具有DMG可调功能的少模掺 铒放大器(FM-EDFA)更有实用性,不仅能够实现少 模掺铒放大器的增益均衡,还可以补偿通信系统的模 式相关损耗。

模式信号的净增益取决于模式增益和吸收两部 分,增益部分为信号模场与反转铒离子浓度分布的交 叠积分,吸收部分为信号模场与铒离子掺杂浓度分布 的交叠积分,其中反转铒离子浓度主要依赖于泵浦功 率^[78]。因此,改变 DMG 的方法可分为三种^[9]。一种 方法是改变铒离子掺杂分布^[10],如使用环形掺杂分布 的掺铒光纤(EDF),可在基模泵浦下实现2.5 dB 的差 模增益^[11]。第二种方法是优化掺铒光纤的折射率分

收稿日期: 2022-01-11; 修回日期: 2022-02-06; 录用日期: 2022-02-28

基金项目:国家自然科学基金(62171078)、国家重点研发计划(2018YFB1801003)

通信作者: *bjwu@uestc.edu.cn

布,通过控制泵浦光的模场分布将差模增益减小到 1 dB^[12]。上述两种方法与掺铒光纤的结构参数相关, 成品后不便调节。第三种方法是通过改变泵浦的功率 和模式成分来调节反转铒离子的分布,是实现DMG 可调的有效手段。Bai等^[13]通过优化LP₀₁和LP₂₁泵浦, 将 DMG 减小到 0.5 dB。Ip^[14]采用LP₀₁、LP₀₂、LP₂₁、 LP₅₁四模泵浦,实现了LP₀₁、LP₀₂、LP₁₁、LP₂₁四模信号 的增益均衡。

与使用相位板、二色镜和空间光调制器等空间光 学元件所构建的FM-EDFA^[15-17]相比,紧凑的光纤型 FM-EDFA在工程应用中更有实用化前景,具有损耗 小、结构简单和集成度高的优点。目前,FM-EDFA的 光纤化仍需解决一些问题:1)需要光纤型的少模信号/ 泵浦光复用和解复用器,以便实现双向泵浦方案和泵 浦光的灵活加载与滤除;2)增加光纤型少模隔离器阻 止反射光,提升模式放大性能;3)泵浦光模式和功率能 够在一定范围内调节,以适应不同 MDM 传输系统的 需要。

本文将光隔离器和波分复用器(WDM)组合在一起(简称 IWDM),制作光纤型的少模 IWDM 复用和解 复用器件,实现整个 FM-EDFA 的光纤化,并开展同 向泵浦和双向泵浦两种情形下的 DMG 可调实验。实 验中采用功率转化效率较高的 1480 nm 泵浦源^[18]。实 验结果表明:当保持泵浦总功率为 200 mW时,LP_{11e}和 LP_{11e}模同向泵浦下可实现 DMG 在 - 1.5 dB~1.1 dB 范围内可调;采用 LP_{11e}和 LP₀₁的双向泵浦方案,DMG 可调范围接近 5 dB。

2 光纤型FM-IWDM的制作

模式选择光子灯笼可以将输入的单模信号复用

第 42 卷 第 15 期/2022 年 8 月/光学学报

到少模光纤中,也可以将信号光与泵浦光复用在一 起构建FM-EDFA,仅适用于同向泵浦方案,并且还 需要在后端滤除泵浦光,这种方案适应性较差。为 了满足不同泵浦方式的需求,简化FM-EDFA的结 构,将波分复用器和隔离器进行光纤化集成设计,将 输入和输出少模光纤封装在微光准直器组件中,制 作光纤型正向FM-IWDM和反向FM-IWDM,实现 1550 nm少模信号光与1480 nm少模泵浦光的复用, 同时可保持少模放大信号的单向传输。正向FM-IWDM将同向泵浦光复用到少模掺铒光纤(FM-EDF)中,并滤除或者解复用出反向泵浦光。类似 地,反向FM-IWDM可将泵浦光反向复用,同时对同 向泵浦光进行解复用。

以正向 FM-IWDM 为例描述 FM-IWDM 的制作 过程,其结构示意图如图1(a)所示。在正向FM-IWDM中:信号光从1550 nm端口输入,依次通过自聚 焦透镜1、隔离器和自聚焦透镜2到达复用端;泵浦光 从1480 nm 端口输入, 被自聚焦透镜2的反射薄膜反 射到复用端口处,其中隔离器正向放置,可抑制信号光 和泵浦光的反射。反向 FM-IWDM 的结构与正向 FM-IWDM 类 似,只是隔离器的方向相反。FM-IWDM 三个端口的尾纤都由少模光纤组成,并经过扩 束处理以承受更高的激光功率。为了突出 IWDM 结 构中光隔离和泵浦光/信号光的耦合过程,图1(b)和 图 1 (c) 分别给出了正向 FM-IWDM 和反向 FM-IWDM的功能示意图,能够方便地分析 IWDM 作为复 用和解复用器时泵浦光的传播方向和工作过程。例 如,反向FM-IWDM可将1480 nm 泵浦光反向复用到 公共端处,根据光的可逆性,也可以将1480 nm 泵浦光 从公共端解复用下来。

图1 光纤型1550 nm/1480 nm FM-IWDM 器件。(a) FM-IWDM 器件的结构示意图;(b)正向 FM-IWDM;(c)反向 FM-IWDM Fig. 1 All-fiber 1550 nm/1480 nm FM-IWDM devices. (a) Structural diagram of FM-IWDM device; (b) forward FM-IWDM; (c) backward FM-IWDM

表1给出了成品后FM-IWDM的性能测试结果。 由表1可知:正向FM-IWDM对LP₀₁和LP₁₁信号光的 插入损耗分别为0.8 dB和2.0 dB,隔离度不小于 44.6 dB;正向FM-IWDM对LP₀₁和LP₁₁泵浦光的插入 损耗分别为4.9 dB和4.3 dB;反向FM-IWDM对LP₀₁ 和LP₁₁信号光的插入损耗分别为0.9 dB和1.9 dB,隔 离度不小于47.0 dB;反向FM-IWDM对LP₀₁和LP₁₁ 泵浦光的插入损耗分别为5.0 dB和5.3 dB。

3 差模增益可调FM-EDFA设计

基于 FM-IWDM 构建了全光纤型的 FM-EDFA, 并以三模情形为例加以描述,如图 2 所示。在 FM-EDFA 光纤化基础上,为了实现 DMG 可调的目标,还 需对 FM-EDFA 的泵浦方式进行灵活设计,包括:1)能 够同时兼容同向、反向和双向等多种泵浦方式;2)可以 实现泵浦光基模到高阶模的灵活转换;3)泵浦功率能 够在不同泵浦模式之间按需分配和调节。

FM-IWDM type	Mode	Insertion loss /dB	Isolation /dB
Forward FM-IWDM	LP ₀₁ (1550 nm)	0.8	44.6
	LP ₁₁ (1550 nm)	2.0	45.4
	LP ₀₁ (1480 nm)	4.9	≥50
	LP ₁₁ (1480 nm)	4.3	≥50
Backward FM-IWDM	LP ₀₁ (1550 nm)	0.9	47.0
	LP ₁₁ (1550 nm)	1.9	48.5
	LP ₀₁ (1480 nm)	5.0	≥50
	LP ₁₁ (1480 nm)	5.3	≥50
signal PC MSPL fo m m m m m m m m m m m m m	FM-EDFA	backward FM-IWDM backward pump MSPL 	—OSA

表1 FM-IWDM的测试结果 Table 1 Test results for FM-IWDM

图 2 基于 FM-IWDM 的全光纤型 FM-EDFA Fig. 2 All-fiber FM-EDFA with FM-IWDMs

为了实现同向和反向泵浦,分别采用前后两个 三模模式选择光子灯笼(3M-MSPL)对泵浦光基模 进行模式转换,两个3M-MSPL的少模输出端分别连 接正向FM-IWDM和反向FM-IWDM的1480 nm端 口,如图2所示。3M-MSPL的输入端可用偏振控制 器(PC)控制3M-MSPL模式转换的纯度和模场的空 间分布。为了实现双向泵浦并获得足够的模式增 益,采用两个泵浦激光器,它们与上述3M-MSPL之 间可通过一个大小为2×6的光开关进行连接。泵浦 方式的改变通过光开关进行控制,也可以利用光开 关的组播功能共享同一泵浦激光源。调节泵浦激光 器电流可改变两个激光器的功率比例,从而实现模 式功率的分配。

如图2所示,少模信号光由输入3M-MSPL复用产生,并注入到正向FM-IWDM的1550nm端口,经FM-EDFA放大后的少模信号光可由光谱分析仪(OSA)测量,或者联合输出3M-MSPL进行波长解复用^[19]。

4 FM-EDFA的差模增益可调实验

为了研究全光纤型 FM-EDFA DMG 的可调性, 开展了同向 LP_{11e}和 LP_{11o}泵浦实验与双向 LP_{11e}和 LP₀₁ 泵浦实验。在实验中,1480 nm 波长的泵浦光总功率 始终固定在 200 mW,FM-EDF 的长度为 3 m,折射率 分布如图 3 所示^[20]。采用波长映射方法^[17]测量 FM-

第 42 卷 第 15 期/2022 年 8 月/光学学报

EDFA的增益,两个信号光模式(LP₀₁和LP_{11e})对应的 光波长分别为1552.5 nm 和1553.0 nm,输入到FM-EDF中的光功率均为-15dBm。

图 3 FM-EDF 的折射率分布 Fig. 3 Refractive index profile of FM-EDF

4.1 LP_{11e}和LP_{11e}同向泵浦

根据图2所示的FM-EDFA结构,将两个泵浦激 光器分别连接到前向3M-MSPL的两个单模输入端 处,调节偏振控制器可在FM-EDF中激发LP_{11e}和 LP_{11e}模式,模式质量和模瓣方向利用红外相机观察, 如图4(a)所示。输入信号的光模式也采用类似方法 激发和观察。

在实验中,保持泵浦总功率不变,逐渐增大LP₁₁₀ 泵浦模式的功率占比,用光谱仪测量从FM-EDF中输 出的LP₀₁和LP_{11e}信号光模式功率。实验测得的两模 信号增益(G₀₁和G_{11e})及其DMG曲线如图4(b)所示, 其中DMG为G₀₁-G_{11e}。由图4(b)可知:1)随着LP₁₁₀ 泵浦模式功率比例的增加,LP₀₁信号增益从12.4 dB逐 渐增加到16.2 dB,而LP_{11e}信号模式的增益变化相对 较小;2)两个模式之间的DMG从-1.5 dB增加到 1.1 dB,可调范围为2.6 dB,实现了DMG从负到正的 可调性;3)当泵浦模式LP₁₁₀和LP_{11e}的功率比例约为 1:1时,可实现LP₀₁和LP_{11e}模式的增益均衡。

4.2 LP_{11e}和LP₀₁双向泵浦

将两个泵浦激光器分别与前后两个 3M-MSPL 的 单模端连接,在FM-EDF 中同时激发正向 LP₁₁e和反向 LP₀₁泵浦模式。与同向泵浦情况一样,先通过偏振控 制器将信号光和泵浦光模斑调整到所需状态,如图 5 (a)所示。逐渐将反向泵浦光 LP₀₁模式的功率由 0 增 加到 200 mW,实验测量两个信号光模式的增益和 DMG曲线,如图 5(b)所示。由图 5(b)可知,随着 LP₀₁ 泵浦模式功率占比的增加,LP₀₁信号模式增益从 13 dB 逐渐增加到 19 dB。增益的变化可以定性地解释为提 高反向泵浦模式 LP₀₁的比例,也会增加反转铒离子分 布与 LP₀₁信号的交叠积分,从而使 LP₀₁信号增益逐渐 增大。

由图 5(b)还可以看出:随着 LP₀₁模泵浦功率比例 的增加,两个信号模式的差模增益从一0.5 dB增加到 4.3 dB,DMG 可调范围为 4.8 dB;当 LP₀₁模式的泵浦 功率占比为 9% 时,两个信号模式的增益相同,可获得 近 14 dB 的均衡放大。

图4 LP_{11e}和LP_{11o}同向泵浦实验。(a)信号和泵浦模斑;(b)增益和DMG曲线

Fig. 4 Codirectional LP_{11e} and LP_{11o} pumping experiment. (a) Signal and pump mode spots; (b) gain and DMG curves

图 5 LP_{11e}和LP₀₁双向泵浦实验。(a)信号和泵浦模斑;(b)增益和DMG曲线 Fig. 5 Bidirectional LP_{11e} and LP₀₁pumping experiment. (a) Signal and pump mode spots; (b) gain and DMG curves

4.3 理论分析

以FM-EDFA的双向泵浦理论模型为基础,分别 采用交叠积分和VPI仿真软件来定性和定量地分析泵 浦方式或模式对信号光DMG的影响。FM-EDFA理 论模型可由铒离子二能级系统的速率方程和光功率传播方程描述。

在二能级系统中,亚稳态铒离子 $N_2(x, y, z)$ 的速率方程为

$$N_{2}(x, y, z) = \frac{W_{13}(x, y, z) + W_{12}(x, y, z)}{1/T_{1} + W_{13}(x, y, z) + W_{12}(x, y, z) + W_{21}(x, y, z)} N_{0}(x, y, z),$$
(1)

式中: $W_{ij}(i, j = 1, 2, 3)$ 分别为铒离子能级 $i \approx i \pi j$ 之间的 受激跃迁率; T_1 为铒离子的弛豫时间(约 10 ms); $N_0(x, y, z)$ 为有源光纤中铒离子的掺杂分布。

在 FM-EDFA 强度模型中,信号光(P_i^{*})和泵浦光(P_j^{*})的功率传播方程为

$$\frac{\mathrm{d}P_{i}^{s}}{\mathrm{d}z} = P_{i}^{s} \bigg[\left(\sigma_{\mathrm{as}} + \sigma_{\mathrm{es}} \right) \iint N_{2}(x, y) \left| f_{i}^{s}(x, y) \right|^{2} \mathrm{d}x \mathrm{d}y - \sigma_{\mathrm{as}} \iint N_{0}(x, y) \left| f_{i}^{s}(x, y) \right|^{2} \mathrm{d}x \mathrm{d}y \bigg],$$
(2)

$$\frac{\mathrm{d}P_{j}^{\mathrm{p}}}{\mathrm{d}z} = u_{j}^{\mathrm{p}}P_{j}^{\mathrm{p}}\left[\left(\sigma_{\mathrm{ap}} + \sigma_{\mathrm{ep}}\right) \iint N_{2}(x, y) \left| f_{j}^{\mathrm{p}}(x, y) \right|^{2} \mathrm{d}x \mathrm{d}y - \sigma_{\mathrm{ap}} \iint N_{0}(x, y) \left| f_{j}^{\mathrm{p}}(x, y) \right|^{2} \mathrm{d}x \mathrm{d}y \right], \qquad (3)$$

式中: $f_i^s(x, y)$ 和 $f_j^p(x, y)$ 为信号i模式和泵浦j模式的 模场分布; $\sigma_{es}(\sigma_{as})$ 和 $\sigma_{ep}(\sigma_{ap})$ 分别是信号光和泵浦光的 辐射截面(吸收截面); $u_j^p = \pm 1$ 分别对应正向泵浦和 反向泵浦情形。

由式(1)~(3)可知,信号模式*i*的增益*G*_{*i*}=

P^s_{*i*,*z*=*l*}/P^s_{*i*,*z*=0}除依赖于信号光与泵浦光的功率外,还与 信号光模场分布、泵浦光模场分布和光纤掺铒离子浓 度之间的交叠积分有关^[9],即

$$\eta_i^{\mathrm{s}} = \iint f_i^{\mathrm{s}}(x, y) f_{\mathrm{p}}(x, y) N_0(x, y) \mathrm{d}x \mathrm{d}y, \qquad (4)$$

式中: $f_p(x,y)$ 为所有泵浦光的叠加模场分布,严格讲 它还依赖于泵浦光功率演化^[8]。FM-EDFA中存在模 式增益竞争的同时,交叠积分越大,模式增益越大^[9]。 对于LP_{Ine}和LP_{Ino}同向泵浦情形,泵浦模场 $f_p(x,y)$ 为 LP_{Ine}和LP_{Ino}模场的叠加。当总泵浦光功率保持不变 时,随着LP_{Ino}泵浦模式功率比例的增加,LP_{Ine}泵浦模 式功率比例减小,与LP_{Ine}信号模式的交叠积分(或增 益)减小,DMG逐渐增大,从而实现负到正的变化。 类似地分析LP_{Ine}和LP₀双向泵浦情形,随着LP₀泵浦 模式功率占比的增加,与LP₀信号模式的交叠积分(或 增益)也增大,DMG逐渐提高。

根据FM-EDFA理论模型,通过式(1)~(3)也可 定量分析上述两种实验配置情形的DMG,这里采用

VPI仿真软件进行计算。由于有源光纤中掺铒浓度分 布未知,仿真中按均匀分布处理,并分别给出 N_0 为 4×10²⁴,7×10²⁴,10×10²⁴m⁻³三个值的仿真曲线, 以表明掺铒浓度的影响。掺铒光纤的辐射截面和吸收 截面采用VPI软件默认值,分别为 $\sigma_{es} = 4.27 \times 10^{-25} \text{ m}^2$, $\sigma_{as} = 3.86 \times 10^{-25} \text{ m}^2$, $\sigma_{ep} = 1.88 \times 10^{-26} \text{ m}^2$, $\sigma_{ap} = 3.63 \times 10^{-25} \text{ m}^2$ 。其他仿真参数与实验参数一 致。两种泵浦情形下 DMG 仿真曲线如图 6 所示。可 以看出:1)随着正向 LP₁₁₀泵浦或者反向 LP₀₁泵浦比例 的增加,两模信号的 DMG 逐渐增大,与实验结果的变 化趋势一致;2)光纤中掺铒浓度越大,DMG 的可调范 围越大。需指出的是,模式增益还依赖于掺铒光纤中 信号光和泵浦光的模场变化及其光偏振特性等^[21],这 些因素也会导致仿真结果与实验结果产生偏差。

第 42 卷 第 15 期/2022 年 8 月/光学学报

图 6 两种泵浦情形下 DMG 的仿真曲线。(a) LP_{11e}和 LP_{11o}同向泵浦;(b) LP_{11e}和 LP₀₁双向泵浦 Fig. 6 Simulated DMG curves for two pumping cases. (a) Codirectional LP_{11e} and LP_{11o} pumping; (b) bidirectional LP_{11e} and LP₀₁ pumping

本文采用两个 3M-MSPL 实现前后泵 浦光的模式 转换,并构建全光纤型 FM-EDFA。如果对泵 浦光模 式和泵浦方式等进行双泵 浦组合,可有 3种同向泵 浦、 3种反向泵 浦和 9种双向泵 浦配置,共计 15种双泵 浦 配置。作为例子,本文开展其中两组实验,以表明实现 可调 DMG 的可行性。两个实验表明,适当调节 FM-EDFA 的泵 浦模式及其功率分配,不仅可以获得 DMG 反转的少模信号的放大,也可以实现更大的 DMG 可 调范围。此外,通 过制作 1550 nm/1480 nm 的 FM-IWDM,并将 3M-MSPL 替换为支持 LP₀₁、LP_{11e}、LP_{11o}、 LP_{21e}、LP_{21o}、LP₀₂的 6M-MSPL,能够获得更多的可选 泵浦组合,有助于实现更大的 DMG 可调范围。

5 结 论

制作1550 nm/1480 nm 正向和反向3M-IWDM, 它们的模式相关损耗分别为1.2 dB和1.0 dB。将 FM-IWDM用于构建全光纤型FM-EDFA,测量泵浦 功率比例变化对FM-EDF输出信号模式增益和DMG 的影响。实验表明,固定泵浦总功率为200 mW,适当 调节FM-EDFA的泵浦模式及其功率分配,可使少模 信号的DMG出现反转,从而用于模式增益均衡或补 偿链路模式相关损耗。

参考文献

- Puttnam B J, Rademacher G, Luís R S. Space-division multiplexing for optical fiber communications[J]. Optica, 2021, 8(9): 1186-1203.
- [2] 涂佳静,李朝晖. 空分复用光纤研究综述[J]. 光学学报, 2021, 41(1): 0106003.
 Tu J J, Li Z H. Review of space division multiplexing fibers[J]. Acta Optica Sinica, 2021, 41(1): 0106003.
- [3] Wada M, Sakamoto T, Aozasa S, et al. Recent progress on SDM amplifiers[C]//European Conference on Optical

Communication (ECOC), September 23-27, 2018, Rome, Italy. New York: IEEE Press, 2018: 18265080.

- [4] Le Taillandier de Gabory E, Takeshita H, Matsumoto K, et al. Reduction in power consumption in multi-core amplifier[C]//Optical Fiber Communication Conference (OFC), March 3-7, 2019, San Diego, California. Washington, D.C.: OSA, 2019: 18618840.
- [5] Jung Y, Alam S U, Richardson D J, et al. Multicore and multimode optical amplifiers for space division multiplexing[M]//Willner A E. Optical fiber telecommunications VII. Amsterdam: Elsevier, 2020: 301-333.
- [6] Jung Y, Kang Q Y, Sahu J K, et al. Reconfigurable modal gain control of a few-mode EDFA supporting six spatial modes[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1100-1103.
- [7] Chen X W, Wu B J, Xie Y Q, et al. Analytical method for few-mode erbium doped fiber amplifiers[J]. Laser Physics Letters, 2020, 17(3): 035102.
- [8] Jiang X R, Wu B J, Xie Y Q, et al. A semi-analytic method for FM-EDFA intensity model[J]. Optical Fiber Technology, 2021, 64: 102546.
- [9] 裴丽,李祉祺,王建帅,等. 空分复用光纤放大器增益 均衡技术研究进展[J]. 光学学报, 2021, 41(1): 0106001.
 Pei L, Li Z Q, Wang J S, et al. Review on gain equalization technology of fiber amplifier using space division multiplexing[J]. Acta Optica Sinica, 2021, 41 (1): 0106001.
- [10] 王文笙, 宁提纲, 裴丽, 等. 基于遗传算法的少模光纤放大器增益均衡[J]. 光学学报, 2021, 41(9): 0906001.
 Wang W S, Ning T G, Pei L, et al. Gain equalization of few-mode fiber amplifier based on genetic algorithm[J]. Acta Optica Sinica, 2021, 41(9): 0906001.
- [11] Ip E, Li M J, Bennett K, et al. Experimental characterization of a ring-profile few-mode erbium-doped

fiber amplifier enabling gain equalization[C]//Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, March 17-21, 2013, Anaheim, California. Washington, D.C.: OSA, 2013: JTh2A.18.

- [12] Ono H, Hosokawa T, Ichii K, et al. 2-LP mode fewmode fiber amplifier employing ring-core erbium-doped fiber[J]. Optics Express, 2015, 23(21): 27405-27418.
- [13] Bai N, Ip E, Wang T, et al. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump[J]. Optics Express, 2011, 19(17):16601-16611.
- [14] Ip E. Gain equalization for few-mode fiber amplifiers beyond two propagating mode groups[J]. IEEE Photonics Technology Letters, 2012, 24(21): 1933-1936.
- [15] Jung Y, Kang Q, Sahu J K, et al. Few-mode EDFA supporting 5 spatial modes with reconfigurable differential modal gain control[C]//39th European Conference and Exhibition on Optical Communication (ECOC 2013), June 23-25, 2013, London, UK. New York: IEEE Press, 2013: 582-584.
- [16] Lim E L, Jung Y, Kang Q, et al. First demonstration of cladding pumped few-moded EDFA for mode division multiplexed transmission[C]//Optical Fiber Communications Conference and Exhibition (OFC), March 9-13, 2014, San Francisco, CA, USA. New

第 42 卷 第 15 期/2022 年 8 月/光学学报

York: IEEE Press, 2014: 14546705.

- [17] Zhang Z Z, Guo C, Cui L, et al. All-fiber few-mode erbium-doped fiber amplifier supporting six spatial modes[J]. Chinese Optics Letters, 2019, 17(10): 100604.
- [18] Lei C M, Feng H L, Messaddeq Y, et al. Investigation of bi-directionally, dual-wavelength pumped extended Lband EDFAs[J]. IEEE Photonics Technology Letters, 2020, 32(18): 1227-1230.
- [19] 郭浩森,武保剑,江歆睿,等.基于光子灯笼的模式功 率检测方法研究[J].光学学报,2022,42(1):0106003.
 Guo H M, Wu B J, Jiang X R, et al. Research on detection method of modal power using photonic lantern [J]. Acta Optica Sinica, 2022, 42(1):0106003.
- [20] Xu Y, Wu B J, Jiang X R, et al. Experimental measurement of absorption coefficients for effective erbium-doping concentration to optimize few-mode erbium-doped fiber amplifiers with low differential mode gain[J]. Photonics, 2021, 8(6): 185.
- [21] Jiang X R, Wu B J. Gain characteristics of few-mode erbium-doped fiber amplifiers pumped with complex mode field[C]//Asia Communications and Photonics Conference, October 24-27, 2021, Shanghai, China. Washington, D.C.: OPTICA, 2021: T4A.31.